刘井响,博士,副教授/硕士生导师
主要研究方向包括:过程监测与软测量、数据挖掘与过程知识发现、工业人工智能系统与技术等,利用数据驱动建模方法及时准确诊断过程故障和精确预测产品质量。主持国家自然科学基金青年项目1项,参与国家自然科学基金面上项目和重点项目多项。在高水平期刊与顶级会议上发表学术论文20余篇,授权国家发明专利3项,中国自动化学会和中国人工智能学会会员,现担任多个国际期刊审稿人。
教育经历
2014.9—2019.3大连理工大学 控制科学与工程学院控制理论与控制工程
2012.9—2014.6大连理工大学 数学科学学院运筹学与控制论
2008.9—2012.6青岛大学 数学科学学院 数学与应用数学
工作经历
2021.7--至今大连海事大学船舶电气工程学院 副教授
2021.4--2021.6 大连海事大学 船舶电气工程学院 讲师
2019.4--2021.3 大连海事大学 船舶电气工程学院 师资博士后
主要研究内容
[1]函数型数据分析:结合小波分析和数值逼近等方法建立函数型数据分析模型,从数据连续变化角度出发探究过程变量的光滑性和微分特征,探讨在光谱数据分析和工业批次过程中的应用;
[2]张量分析:采用张量分析模型对高阶数据直接提取特征并建立统计模型,探讨在工业批次过程中的应用;
[3]多规格过程建模:针对多规格工业过程中的多数据集和小样本问题开展迁移学习和元学习等方面研究。
科研项目
[1]国家自然科学基金项目(青年项目),基于多特征提取与迁移学习的多规格批次过程函数型软测量建模,2021-2023,主持.
[2]大连理工大学工业装备智能控制与优化教育部重点实验室特别资助项目,基于红外光谱检测的批次结晶过程在线质量评估与智能优化,2021.7-2023.6,主持.
期刊论文
[1]Jingxiang Liu, Guan-Yu Hou, Junghui Chen. Supervised functional modeling method for long durations of batch processes with limited batch data. Chemical Engineering Science 247 (2022) 116991.
[2]Jingxiang Liu,Jie Hou, Junghui Chen. Dual-layer feature extraction based soft sensor methods and applications to industrial polyethylene processes.Computers and Chemical Engineering 154 (2021) 107469.
[3]Jingxiang Liu, Dan Wang, Junghui Chen. Global-local based wavelet functional principal component analysis for fault detection and diagnosis in batch processes. Chemometrics and Intelligent Laboratory Systems 212 (2021) 104279.
[4]Jingxiang Liu, Junghui Chen, Dan Wang. Linear and exponential fault-assistant feature extraction methods for process monitoring. Control Engineering Practice, 2021, 109, 104732.
[5]Jingxiang Liu, Tao Liu, Junghui Chen, Hong Yue, Fangkun Zhang, Feiran Sun. Data-driven modeling of product crystal size distribution and optimal input design for batch cooling crystallization processes. Journal of Process Control, 2020, 96, 1-14 (IF=3.624).
[6]Jingxiang Liu, Tao Liu, Guoqing Mu, Junghui Chen. Wavelet based calibration model building of NIR spectroscopy for in-situ measurement of granule moisture content during fluidized bed drying. Chemical Engineering Science, 2020, 226, 115867 (IF=3.871).
[7]Jingxiang Liu, Dan Wang, Junghui Chen. Monitoring Framework Based on Generalized Tensor PCA for Three-Dimensional Batch Process Data. Industrial & Engineering Chemistry Research, 2020, 59, 10493-10508.
[8]Jingxiang Liu, Junghui Chen, Dan Wang. Wavelet functional principal component analysis for batch process monitoring. Chemometrics and Intelligent Laboratory Systems, 2020, 196, 103897.
[9]Jingxiang Liu, Tao Liu, Junghui Chen. Quality prediction for multi-grade processes by just-in-time latent variable modeling with integration of common and special features, Chemical Engineering Science, 2018, 191, 31-41.
[10]Jingxiang Liu, Tao Liu, Junghui Chen, Pan Qin. Novel common and special features extraction for monitoring multi-grade processes, Journal of Process Control, 2018, 66, 98-107.
[11]Jingxiang Liu, Tao Liu, Junghui Chen. Sequential local-based Gaussian mixture model for monitoring multiphase batch processes. Chemical Engineering Science, 2018, 181, 101-113.
[12]Jingxiang Liu,Tao Liu, Jie Zhang. Window-based stepwise sequential phase partition for nonlinear batch process monitoring. Industrial & Engineering Chemistry Research, 2016, 55(34), 9229-9243.
授权专利
[1]刘井响等.一种基于张量主元分析的不等长批次数据实时监测方法, ZL201910570523.2, 2021/08/03.
[2]刘井响等.一种基于小波函数主元分析的批次过程监测方法, ZL201910570527.0, 2021/08/03.
[3]刘井响等.一种基于小波函数的近红外光谱软测量方法及系统, ZL201910555369.1, 2021/08/24.
欢迎对数据科学、机器学习、人工智能等研究热点和前沿问题感兴趣的同学报考,联系方式:jxliu@dlmu.edu.cn